Before the featured portal process ceased in 2017, this had been designated as a featured portal.
Page semi-protected

Portal:Mathematics

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The Mathematics Portal


Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Used for calculation, it is considered the most important subject. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

Refresh with new selections below (purge)

Selected article – show another

Euclidean geometry is a mathematical system attributed to the Greek mathematician Euclid of Alexandria. Euclid's text Elements was the first systematic discussion of geometry. It has been one of the most influential books in history, as much for its method as for its mathematical content. The method consists of assuming a small set of intuitively appealing axioms, and then proving many other propositions (theorems) from those axioms. Although many of Euclid's results had been stated by earlier Greek mathematicians, Euclid was the first to show how these propositions could fit together into a comprehensive deductive and logical system.

The Elements begin with plane geometry, still often taught in secondary school as the first axiomatic system and the first examples of formal proof. The Elements goes on to the solid geometry of three dimensions, and Euclidean geometry was subsequently extended to any finite number of dimensions. Much of the Elements states results of what is now called number theory, proved using geometrical methods.

For over two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious that any theorem proved from them was deemed true in an absolute sense. Today, however, many other self-consistent geometries are known, the first ones having been discovered in the early 19th century. It also is no longer taken for granted that Euclidean geometry describes physical space. An implication of Einstein's theory of general relativity is that Euclidean geometry is only a good approximation to the properties of physical space if the gravitational field is not too strong. (Full article...)

View all selected articles

Selected image – show another

A Klein bottle is an example of a closed surface (a two-dimensional manifold) that is non-orientable (no distinction between the "inside" and "outside"). This image is a representation of the object in everyday three-dimensional space, but a true Klein bottle is an object in four-dimensional space. When it is constructed in three-dimensions, the "inner neck" of the bottle curves outward and intersects the side; in four dimensions, there is no such self-intersection (the effect is similar to a two-dimensional representation of a cube, in which the edges seem to intersect each other between the corners, whereas no such intersection occurs in a true three-dimensional cube). Also, while any real, physical object would have a thickness to it, the surface of a true Klein bottle has no thickness. Thus in three dimensions there is an inside and outside in a colloquial sense: liquid forced through the opening on the right side of the object would collect at the bottom and be contained on the inside of the object. However, on the four-dimensional object there is no inside and outside in the way that a sphere has an inside and outside: an unbroken curve can be drawn from a point on the "outer" surface (say, the object's lowest point) to the right, past the "lip" to the "inside" of the narrow "neck", around to the "inner" surface of the "body" of the bottle, then around on the "outer" surface of the narrow "neck", up past the "seam" separating the inside and outside (which, as mentioned before, does not exist on the true 4-D object), then around on the "outer" surface of the body back to the starting point (see the light gray curve on this simplified diagram). In this regard, the Klein bottle is a higher-dimensional analog of the Möbius strip, a two-dimensional manifold that is non-orientable in ordinary 3-dimensional space. In fact, a Klein bottle can be constructed (conceptually) by "gluing" the edges of two Möbius strips together.

Did you know – view different entries

Did you know...
Showing 7 items out of 75

WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

WikiProjects

Project pages

Essays

Subprojects

Related projects

Things you can do

Subcategories


Select [►] to view subcategories

Topics in mathematics

General Foundations Number theory Discrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png


Algebra Analysis Geometry and topology Applied mathematics
Arithmetic symbols.svg
Source
Nuvola apps kpovmodeler.svg
Gcalctool.svg

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

Related portals



In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database